Подпишись и читай
самые интересные
статьи первым!

Алканы особенности электронного строения. Алканы – определение, строение, физические и химические свойства. Взаимосвязь строения алканов с их реакционной способностью

Простейшими органическими соединениями являются углеводороды , состоящие из углерода и водорода. В зависимости от характера химических связей в углеводородах и соотношения между углеродом и водородом они подразделяются на предельные и непредельные (алкены, алкины и др.)

Предельными углеводородами (алканами, углеводородами метанового ряда) называются соединения углерода с водородом, в молекулах которых каждый атом углерода затрачивает на соединение с любым другим соседним атомом не более одной валентности, причем, все не затраченные на соединение с углеродом валентности насыщены водородом. Все атомы углерода в алканах находятся в sp 3 - состоянии. Предельные углеводороды образуют гомологический ряд, характеризующийся общей формулой С n Н 2n+2 . Родоначальником этого ряда является метан.

Изомерия. Номенклатура.

Алканы с n=1,2,3 могут существовать только в виде одного изомера

Начиная с n=4, появляется явление структурной изомерии.

Число структурных изомеров алканов быстро растет с увеличением числа углеродных атомов, например, пентан имеет 3 изомера, гептан - 9 и т.д.

Число изомеров алканов увеличивается и за счет возможных стереоизомеров. Начиная с C 7 Н 16 возможно существование хиральных молекул, которые образуют два энантиомера.

Номенклатура алканов.

Доминирующей номенклатурой является номенклатура IUPAC. В тоже время в ней присутствуют элементы тривиальных названий. Так, первые четыре члена гомологического ряда алканов имеют тривиальные названия.

СН 4 - метан

С 2 Н 6 - этан

С 3 Н 8 - пропан

С 4 Н 10 - бутан.

Названия остальных гомологов образованы от греческих латинских числительных. Так, для следующих членов ряда нормального (неразветвленного) строения используются названия:

С 5 Н 12 - пентан, С 6 Н 14 - гексан, С 7 Н 18 - гептан,

С 14 Н 30 - тетрадекан, С 15 Н 32 - пентадекан и т.д.

Основные правила IUPAC для разветвленных алканов

а) выбирают наиболее длинную неразветвленную цепь, название которой составляет основу (корень). К этой основе прибавляют суффикс “ан”

б) нумеруют эту цепь по принципу наименьших локантов,

в) заместитель указывают в виде префиксов в алфавитном порядке с указанием места нахождения. Если при родоначальной структуре находятся несколько одинаковых заместителей, то их количество указывают греческими числительными.

В зависимости от числа других углеродных атомов, с которыми непосредственно связан рассматриваемый углеродный атом, различают: первичные, вторичные, третичные и четвертичные углеродные атомы.

В качестве заместителей в разветвленных алканах фигурируют алкильные группы или алкильные радикалы, которые рассматриваются как результат отщепления от молекулы алкана одного водородного атома.

Название алкильных групп образуют от названия соответствующих алканов путем замены последних суффикса “ан” на суффикс “ил”.

СН 3 - метил

СН 3 СН 2 - этил

СН 3 СН 2 СН 2 - пропил

Для названия разветвленных алкильных групп используют также нумерацию цепи:

Начиная с этана, алканы способны образовывать конформеры, которым соответствует заторможенная конформация. Возможность перехода одной заторможенной конформации в другую через заслоненную определяется барьером вращения. Определение структуры, состава конформеров и барьеров вращения являются задачами конформационного анализа. Методы получения алканов.

1. Фракционная перегонка природного газа или бензиновой фракции нефти. Таким способом можно выделять индивидуальные алканы до 11 углеродных атомов.

2. Гидрирование угля. Процесс проводят в присутствии катализаторов (оксиды и сульфиды молибдена, вольфрама, никеля) при 450-470 о С и давлениях до 30 Мпа. Уголь и катализатор растирают в порошок и в суспензированном виде гидрируют, борботируя водород через суспензию. Получающиеся смеси алканов и циклоалканов используют в качестве моторного топлива.

3. Гидрирование СО и СО 2 .

СО + Н 2  алканы

СО 2 + Н 2  алканы

В качестве катализаторов этих реакций используют Со, Fe, и др. d - элементы.

4. Гидрирование алкенов и алкинов.

5. Металлоорганический синтез.

а). Синтез Вюрца.

2RHal + 2Na  R R + 2NaHal

Этот синтез малопригоден, если в качестве органических реагентов используют два разных галогеналкана.

б). Протолиз реактивов Гриньяра.

R Hal + Mg  RMgHal

RMgHal + HOH  RH + Mg(OH)Hal

в). Взаимодействие диалкилкупратов лития (LiR 2 Cu) с алкилгалогенидами

LiR 2 Cu + R X  R R + RCu + LiX

Сами диалкилкупраты лития получают двухстадийным способом

2R Li + CuI  LiR 2 Cu + LiI

6. Электролиз солей карбоновых кислот (синтез Кольбе).

2RCOONa + 2H 2 O  R R + 2CO 2 + 2NaOH + H 2 ­

7. Сплавление солей карбоновых кислот со щелочами.

Реакция используется для синтеза низших алканов.

8. Гидрогенолиз карбонильных соединений и галогеналканов.

а). Карбонильные соединения. Синтез Клемменса.

б). Галогеналканы. Каталитический гидрогенолиз.

В качестве катализаторов используют Ni, Pt, Pd.

в) Галогеналканы. Реагентное восстановление.

RHal + 2HI  RH + HHal + I 2

Химические свойства алканов.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения. Для алканов характерны реакции замещения, отщепления, горения.

Тип и название реакции

1. Реакции замещения

А) с галогенами хлором Cl 2 –на свету , Br 2 - при нагревании ) реакция подчиняется правилу Марковника (Правила Марковникова ) - в первую очередь галоген замещает водород у наименее гидрированного атома углерода. Реакция проходит поэтапно - за один этап замещается не более одного атома водорода.

Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Б) Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. Один из атомов водорода заменяется на остаток NO 2 (нитрогруппа) и выделяется вода

2. Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH 3 - CH 3 → CH 2 = CH 2 + Н 2

Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C 6 H 14 C 2 H 6 + C 4 H 8

В) полное термическое разложение

СН 4 C + 2H 2

3. Реакции окисления

А) реакция горения При поджигании (t = 600 o С) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

С n Н 2n+2 + O 2 ––>CO 2 + H 2 O + Q

СН 4 + 2O 2 ––>CO 2 + 2H 2 O + Q

Б) Каталитическое окисление - при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С 2 –С 3) получают уксусную кислоту

4. Реакции изомеризациих арактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С 4 Н 10 C 4 H 10

5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).

Механиз реакции галогенирования:

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование - это одна из реакций замещения. Галогенирование алканов подчиняется правилу Марковника (Правила Марковникова) - в первую очередь галогенируется наименее гидрированый атом углерода. Галогенирование алканов проходит поэтапно - за один этап галогенируется не более одного атома водорода.

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на атомы, затем они атакуют молекулы метана, отрывая у них атом водорода, в результате этого образуются метильные радикалы СН 3 , которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова.

RH + HNO 3 = RNO 2 + H 2 O

т. е. один из атомов водорода заменяется на остаток NO 2 (ни-трогруппа) и выделяется вода.

Особенности строения изомеров сильно отражаются на течении этой реакции, так как легче всего она ведет к замещению на нитрогруппу атома водорода в остатке СИ (имеющемся лишь в некоторых изомерах), менее легко замещается водород в группе СН 2 и еще труднее - в остатке СН 3 .

Парафины довольно легко нитруются в газовой фазе при 150-475° С двуокисью азота или парами азотной кислоты; при этом происходит частично и. окисление. Нитрованием метана получается почти исключительно нитрометан:

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов. Азотная кислота при обыкновенной температуре почти не действует на парафиновые углеводороды. При нагревании же действует главным образом как окислитель. Однако, как нашел М. И. Коновалов (1889), при нагревании азотная кислота действует отчасти и «нитрующим» образом; особенно хорошо идет реакция нитрования со слабой азотной кислотой при нагревании и повышенном давлении. Реакция нитрования выражается уравнением.

Последующие за метаном гомологи дают смесь различных нитропарафинов вследствие попутно идущего расщепления. При нитровании этана получаются нитроэтан СН 3 -СН 2 -NO 2 и нитрометан СН 3 -NO 2 . Из пропана образуется смесь нитропарафинов:

Нитрование парафинов в газовой фазе теперь осуществляется в промышленном масштабе.

Сульфахлорирование:

Важной в практическом отношении реакцией является сульфохлорирование алканов. При взаимодействии алкана с хлором и сернистым ангидридом при облучении происходит замещение водорода на хлорсульфонильную группу:

Стадии этой реакции:

Cl +R:H→R +HCl

R +SO 2 →RSO 2

RSO 2 + Cl:Cl→RSO 2 Cl+Cl

Алкансульфохлориды легко гидролизуются до алкансульфоксилост (RSO 2 OH),натриевые соли которых (RSO 3¯ Na + - алкансульфонат натрия) проявляют свойства,подобные мылам, и применяются в качестве детерагентов.

ОПРЕДЕЛЕНИЕ

Алканы – предельные (алифатические) углеводороды, состав которых выражается формулой C n H 2 n +2 .

Алканы образуют гомологический ряд, каждое химическое соединение которого по составу отличается от последующего и предыдущего на одинаковое число атомов углерода и водорода – CH 2 , а вещества, входящие в гомологический ряд, называются гомологами. Гомологический ряд алканов представлен в таблице 1.

Таблица 1. Гомологический ряд алканов.

В молекулах алканов выделяют первичные (т.е. связанные одной связью), вторичные (т.е. связанные двумя связями), третичные (т.е. связанные тремя связями) и четвертичные (т.е. связанные четырьмя связями) атомы углерода.

C 1 H3 – C 2 H 2 – C 1 H 3 (1 – первичные, 2- вторичные атомы углерода)

CH 3 –C 3 H(CH 3) – CH 3 (3- третичный атом углерода)

CH 3 – C 4 (CH 3) 3 – CH 3 (4- четвертичный атом углерода)

Для алканов характерна структурная изомерия (изомерия углеродного скелета). Так, у пентана имеются следующие изомеры:

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 (пентан)

CH 3 –CH(CH 3)-CH 2 -CH 3 (2-метилбутан)

CH 3 -C(CH 3) 2 -CH 3 (2,2 – диметилпропан)

Для алканов, начиная с гептана, характерна оптическая изомерия.

Атомы углерода в предельных углеводородах находятся в sp 3 –гибридизации. Углы между связями в молекулах алканов 109,5.

Химические свойства алканов

При обычных условиях алканы химически инертны — не реагируют ни с кислотами, ни со щелочами. Это объясняется высокой прочностью -связей С-С и С-Н. Неполярные связи С-С и С-Н способны расщепляться только гомолитически под действием активных свободных радикалов. Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения. При радикальных реакция в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

Реакции радикального замещения имеют цепной характер. Основные стадии: зарождение (инициирование) цепи (1) – происходит под действием УФ-излучения и приводит к образованию свободных радикалов, рост цепи (2) – происходит за счет отрыва атома водорода от молекулы алкана; обрыв цепи (3) – происходит при столкновении двух одинаковых или разных радикалов.

X:X → 2X . (1)

R:H + X . → HX + R . (2)

R . + X:X → R:X + X . (2)

R . + R . → R:R (3)

R . + X . → R:X (3)

X . + X . → X:X (3)

Галогенирование. При взаимодействии алканов с хлором и бромом при действии УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов:

CH 3 Cl +Cl 2 = CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 +Cl 2 = CHCl 3 + HCl (трихлорметан)

CHCl 3 +Cl 2 = CCl 4 + HCl (тетрахлорметан)

Нитрование (реакция Коновалова) . При действии разбавленной азотной кислоты на алканы при 140С и небольшом давлении протекает радикальная реакция:

CH 3 -CH 3 +HNO 3 = CH 3 -CH 2 -NO 2 (нитроэтан) + H 2 O

Сульфохлорирование и сульфоокисление. Прямое сульфирование алканов протекает с трудом и чаще всего сопровождается окислением, в результате чего образуются алкансульфонилхлориды:

R-H + SO 2 + Cl 2 → R-SO 3 Cl + HCl

Реакция сульфоокисления протекает аналогично, только в этом случае образуются алкансульфоновые кислоты:

R-H + SO 2 + ½ O 2 → R-SO 3 H

Крекинг – радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге высших алканов образуются алкены, при крекинге метана и этана образуется ацетилен:

С 8 H 18 = C 4 H 10 (бутан)+ C 3 H 8 (пропан)

2CH 4 = C 2 H 2 (ацетилен) + 3H 2

Окисление . При мягком окислении метана кислородом воздуха могут быть получены метанол, муравьиный альдегид или муравьиная кислота. На воздухе алканы сгорают до углекислого газа и воды:

C n H 2 n +2 + (3n+1)/2 O 2 = nCO 2 + (n+1)H 2 O

Физические свойства алканов

При обычных условиях С 1 -С 4 – газы, С 5 -С 17 – жидкости, начиная с С 18 – твердые вещества. Алканы практически нерастворимы в воде, но, хорошо растворимы в неполярных растворителях, например, в бензоле. Так, метан СН 4 (болотный, рудничий газ) – газ без цвета и запаха, хорошо растворимый в этаноле, эфире, углеводородах, но плохо растворимый в воде. Метан используют в качестве высококалорийного топлива в составе природного газа, в качестве сырья для производства водорода, ацетилена, хлороформа и других органических веществ в промышленных масштабах.

Пропан С 3 Н 8 и бутан С 4 Н 10 – газы, применяемые в быту, в качестве балонных газов, за счет легкой сжижаемости. Пропан используется в качестве автомобильного топлива, поскольку является более экологически чистым, чем бензин. Бутан – сырье для получения 1,3 –бутадиена, использующегося в производстве синтетического каучука.

Получение алканов

Алканы получают из природных источников – природного газа (80-90% — метан, 2-3% — этан и другие предельные углеводороды), угля, торфа, древесины, нефти и горного воска.

Выделяют лабораторные и промышленные способы получения алканов. В промышленности алканы получают из битумного угля (1) или по реакции Фишера-Тропша (2):

nC + (n+1)H 2 = C n H 2 n +2 (1)

nCO + (2n+1)H 2 = C n H 2 n +2 + H 2 O (2)

К лабораторным способам получения алканов относят: гидрирование непредельных углеводородов при нагревании и в присутствии катализаторов (Ni, Pt, Pd) (1), взаимодействием воды с металлоорганическими соединениями (2), электролизом карбоновых кислот (3), по реакциям декарбоксилирования (4) и Вюрца (5) и другими способами.

R 1 -C≡C-R 2 (алкин) → R 1 -CH = CH-R 2 (алкен) → R 1 -CH 2 – CH 2 -R 2 (алкан) (1)

R-Cl + Mg → R-Mg-Cl + H 2 O → R-H (алкан) + Mg(OH)Cl (2)

CH 3 COONa↔ CH 3 COO — + Na +

2CH 3 COO — → 2CO 2 + C 2 H 6 (этан) (3)

CH 3 COONa + NaOH → CH 4 + Na 2 CO 3 (4)

R 1 -Cl +2Na +Cl-R 2 →2NaCl + R 1 -R 2 (5)

Примеры решения задач

ПРИМЕР 1

Задание Определите массу хлора, необходимого для хлорирования по первой стадии 11,2 л метана.
Решение Запишем уравнение реакции первой стадии хлорирования метана (т.е. в реакции галогенирования происходит замещения всего одного атома водорода, в результате чего образуется монохлорпроизводное):

CH 4 + Cl 2 = CH 3 Cl + HCl (хлорметан)

Найдем количество вещества метана:

v(CH 4) = V(CH 4)/V m

v(CH 4) = 11,2/22,4 = 0,5 моль

По уравнению реакции количество моль хлора и количество моль метана равны 1 моль, следовательно, практическое количество моль хлора и метана также будет одинаковым и будет равно:

v(Cl 2) = v(CH 4) = 0,5 моль

Зная количество вещества хлора можно найти его массу (что и поставлено в вопросе задачи). Масса хлора рассчитывается как произведение количества вещества хлора на его молярную массу (молекулярная масса 1 моль хлора; молекулярная масса рассчитывается с помощью таблицы химических элементов Д.И. Менделеева). Масса хлора будет равна:

m(Cl 2) = v(Cl 2)×M(Cl 2)

m(Cl 2) = 0,5×71 = 35,5 г

Ответ Масса хлора равна 35,5 г

Алканы :

Алканы - это предельные углеводороды, в молекулах которых все атомы связаны одинарными связями. Формула -

Физические свойства :

  • Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
  • При нормальных условиях неразветвлённые алканы с CH 4 до C 4 H 10 - газы; с C 5 H 12 до C 13 H 28 - жидкости; после C 14 H 30 - твёрдые тела.
  • Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан - жидкость, а неопентан - газ.

Химические свойства:

· Галогенирование

это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно - за один этап замещается не более одного атома водорода:

  1. CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)
  2. CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)
  3. CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)
  4. CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, забирая у них атом водорода, в результате этого образуются метильные радикалы ·СН 3 , которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

· Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

CH 4 + 2O 2 → CO 2 + 2H 2 O + Q

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения алканов можно записать следующим образом:

С n Н 2n +2 +(1,5n +0,5)O 2 = n CO 2 + (n +1)H 2 O

· Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

CH 4 → C + 2H 2 (t > 1000 °C)

C 2 H 6 → 2C + 3H 2

Алкены :

Алкены-это непредельные углеводороды,содержащие в молекуле,кроме одинарных связей,одну двойную углерод-углеродную связь.Формула- C n H 2n

Принадлежность углеводорода к классу алкенов отражают родовым суффиксом –ен в его названии.

Физические свойства :

  • Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.
  • При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с C 5 H 10 до C 17 H 34 - жидкости, после C 18 H 36 - твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Химические свойства :

· Дегидратация -это процесс отщепления молекулы воды от молекулы органического соединения.

· Полимеризация -это химический процесс соединения множества исходных молекул низкомолекулярного вещества в крупные молекулы полимера.

Полимер -это высокомолекулярное соединение,молекулы которого состоят из множества одинаковых структурных звеньев.

Алкадиены :

Алкадиены -это непредельные углеводороды, содержащие в молекуле,кроме одинрных связей,дведвойные углерод-углеродные связи.Формула-

. Диены являются структурными изомерамиалкинов.

Физические свойства :

Бутадие́н - газ (tкип −4,5 °C), изопрен - жидкость, кипящая при 34 °C, диметилбутадиен - жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук. Натуральный каучук в очищенном состоянии является полимером с общей формулой (С5Н8)n и получается из млечного сока некоторых тропических растений.

Каучук хорошо растворим в бензоле, бензине, сероуглероде. При низкой температуре становится ломким, при нагревании липким. Для улучшения механических и химических свойств каучука его превращают в резину, подвергая вулканизации. Для получения резиновых изделий сначала их формуют из смеси каучука с серой, а также с наполнителями: сажей, мелом, глиной и некоторыми органическими соединениями, служащими для ускорения вулканизации. Затем изделия нагревают - горячая вулканизация. При вулканизации сера химически связывается с каучуком. Кроме того, в вулканизированном каучуке сера содержится в свободном состоянии в виде мельчайших частиц.

Диеновые углеводороды легко полимеризуются. Реакция полимеризации диеновых углеводородов лежит в основе синтеза каучука. Вступают в реакции присоединения (гидрирование, галогенирование, гидрогалогенирование):

H 2 C=CH-CH=CH 2 + H 2 -> H 3 C-CH=CH-CH 3

Алкины :

Алкины-этонепредельные углеводороды молекулы которых содержат,помимо одинарных связей,одну тройную углерод-глеродную связь.Формула-C n H 2n-2

Физические свойства :

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С 4) - газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах.

Алкины плохо растворимы в воде, лучше - в органических растворителях.

Химические свойства :

· Реакции галогенирования

Алкины способны присоединять одну или две молекулы галогена с образованием соответствующих галогенпроизводных:

· Гидратация

В присутствии солей ртути алкины присоединяют воду с образованием ацетальдегида (для ацетилена) или кетона (для прочих алкинов)

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.

Простейшими органическими соединениями являются углеводороды , состоящие из углерода и водорода. В зависимости от характера химических связей в углеводородах и соотношения между углеродом и водородом они подразделяются на предельные и непредельные (алкены, алкины и др.)

Предельными углеводородами (алканами, углеводородами метанового ряда) называются соединения углерода с водородом, в молекулах которых каждый атом углерода затрачивает на соединение с любым другим соседним атомом не более одной валентности, причем, все не затраченные на соединение с углеродом валентности насыщены водородом. Все атомы углерода в алканах находятся в sp 3 - состоянии. Предельные углеводороды образуют гомологический ряд, характеризующийся общей формулой С n Н 2n+2 . Родоначальником этого ряда является метан.

Изомерия. Номенклатура.

Алканы с n=1,2,3 могут существовать только в виде одного изомера

Начиная с n=4, появляется явление структурной изомерии.

Число структурных изомеров алканов быстро растет с увеличением числа углеродных атомов, например, пентан имеет 3 изомера, гептан - 9 и т.д.

Число изомеров алканов увеличивается и за счет возможных стереоизомеров. Начиная с C 7 Н 16 возможно существование хиральных молекул, которые образуют два энантиомера.

Номенклатура алканов.

Доминирующей номенклатурой является номенклатура IUPAC. В тоже время в ней присутствуют элементы тривиальных названий. Так, первые четыре члена гомологического ряда алканов имеют тривиальные названия.

СН 4 - метан

С 2 Н 6 - этан

С 3 Н 8 - пропан

С 4 Н 10 - бутан.

Названия остальных гомологов образованы от греческих латинских числительных. Так, для следующих членов ряда нормального (неразветвленного) строения используются названия:

С 5 Н 12 - пентан, С 6 Н 14 - гексан, С 7 Н 18 - гептан,

С 14 Н 30 - тетрадекан, С 15 Н 32 - пентадекан и т.д.

Основные правила IUPAC для разветвленных алканов

а) выбирают наиболее длинную неразветвленную цепь, название которой составляет основу (корень). К этой основе прибавляют суффикс “ан”

б) нумеруют эту цепь по принципу наименьших локантов,

в) заместитель указывают в виде префиксов в алфавитном порядке с указанием места нахождения. Если при родоначальной структуре находятся несколько одинаковых заместителей, то их количество указывают греческими числительными.

В зависимости от числа других углеродных атомов, с которыми непосредственно связан рассматриваемый углеродный атом, различают: первичные, вторичные, третичные и четвертичные углеродные атомы.



В качестве заместителей в разветвленных алканах фигурируют алкильные группы или алкильные радикалы, которые рассматриваются как результат отщепления от молекулы алкана одного водородного атома.

Название алкильных групп образуют от названия соответствующих алканов путем замены последних суффикса “ан” на суффикс “ил”.

СН 3 - метил

СН 3 СН 2 - этил

СН 3 СН 2 СН 2 - пропил

Для названия разветвленных алкильных групп используют также нумерацию цепи:

Начиная с этана, алканы способны образовывать конформеры, которым соответствует заторможенная конформация. Возможность перехода одной заторможенной конформации в другую через заслоненную определяется барьером вращения. Определение структуры, состава конформеров и барьеров вращения являются задачами конформационного анализа.

2. Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения.

Для алканов характерны реакции замещения, отщепления, горения.

1. Реакции замещения

А) с галогенами хлором Cl 2 –на свету , Br 2 - при нагревании ) реакция подчиняется правилу Марковника (Правила Марковникова ) - в первую очередь галоген замещает водород у наименее гидрированного атома углерода. Реакция проходит поэтапно - за один этап замещается не более одного атома водорода.

Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)



CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан)

Б) Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. Один из атомов водорода заменяется на остаток NO 2 (нитрогруппа) и выделяется вода

Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH 3 - CH 3 → CH 2 = CH 2 + Н 2

Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C 6 H 14 C 2 H 6 + C 4 H 8

В) полное термическое разложение

СН 4 C + 2H 2

Реакции окисления

А) реакция горения При поджигании (t = 600 o С) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

С n Н 2n+2 + O 2 ––>CO 2 + H 2 O + Q

СН 4 + 2O 2 ––>CO 2 + 2H 2 O + Q

Б) Каталитическое окисление - при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С 2 –С 3) получают уксусную кислоту

4. Реакции изомеризациих арактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С 4 Н 10 C 4 H 10

5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).

Включайся в дискуссию
Читайте также
Алканы – определение, строение, физические и химические свойства
Удаление полипов в кишечнике: виды операций, послеоперационное восстановление, цены
Светлана ромашина - биография, информация, личная жизнь