Подпишись и читай
самые интересные
статьи первым!

Какая самая маленькая частица во вселенной существует. Фундаментальные взаимодействия Изучение новой темы

Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.

Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.

И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.

Самые мельчайшие частицы Вселенной

Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.

Бозон Хиггса, настолько важная для науки частица, что ее называют “частицей Бога”. Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие.

Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.

Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую “стандартную модель” физики, которая описывает известные частицы.

Бозон Хиггса принципиально определил массу всему, что существует во Вселенной.

Кварки

Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.

Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см .

Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.

Суперсимметричность

Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.

Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка – скварк, фотона –фотино, хиггса - хиггсино.

Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.

Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.

Нейтрино

Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.

Некоторые происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.

Антивещество

Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.

Гравитоны

В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.

Нити энергии

В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.

Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Ничто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта “лазейка”, похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.

Другой способ решения точечной проблемы – сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.

Точка черной дыры

Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.

Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями – общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.

Планковская длина

Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с “длину планка”.

Длина планка составляет 1,6 х 10 -35 метров (число 16 перед которым 34 нуля и десятичная точка) - непонятно малый масштаб, который связан с различными аспектами физики.

Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.

Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.

Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.

Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.

Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров

Выводы

Со школьной скамьи было известно, что самая маленькая частица во Вселенной электрон имеет отрицательный заряд и очень маленькую массу, равную 9,109 х 10 – 31 кг, а классический радиус электрона составляет 2,82 х 10 -15 м.

Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.

Урок № 67.

Тема урока : Проблемы элементарных частиц

Цели урока:

Образовательные: познакомить учащихся с понятием - элементарная частица, с классификацией элементарных частиц, обобщить и закрепить знания об фундаментальных видах взаимодействий, формировать научное мировоззрение.

Воспитательные: формировать познавательный интерес к физике, привитие любви и уважения к достижениям науки.

Развивающие: развитие любознательности, умение анализировать, самостоятельно формулировать выводы, развитие речи, мышления.

Оборудование: интерактивная доска (или проектор с экраном).

Тип урока: изучение нового материала.

Вид урока: лекция

Ход урока:

    Организационный этап

    Изучение новой темы.

В природе существуют 4 типа фундаментальных (основных) взаимодействий: гравитационное, электромагнитное, сильное и слабое. По современным представлениям взаимодействие между телами осуществляется через поля, окружающие эти тела. Само поле в квантовой теории понимается как совокупность квантов. Каждый тип взаимодействия имеет своих переносчиков взаимодействия и сводится к поглощению и испусканию частицами соответствующих квантов света.

Взаимодействия могут быть длиннодействующие (проявляются на очень больших расстояниях) и короткодействующие (проявляются а очень малых расстояниях).

    Гравитационное взаимодействие осуществляется посредством обмена гравитонами. Экспериментально они не обнаружены. Согласно закону, открытому в 1687 году великим английским ученым Исааком Ньютоном, все тела независимо от формы и размеров притягиваются друг другу с силой, прямо пропорциональной их массе и обратно пропорциональна квадрату расстояния между ними. Гравитационное взаимодействие всегда приводит к притяжению тел.

    Электромагнитное взаимодействие является длиннодействующим. В отличие от гравитационного взаимодействия, электромагнитное взаимодействие может привести как к притяжению, так и к отталкиванию. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного поля – фотонами. В результате обмена этими частицами и возникает электромагнитное взаимодействие между заряженными телами.

    Сильное взаимодействие – это самые мощное из всех взаимодействий. Оно является короткодействующим, соответствующие силы очень быстро убывают по мере увеличения расстояния между ними. Радиус действия ядерных сил 10 -13 см

    Слабое взаимодействие проявляется на очень малых расстояниях. Радиус действия примерно в 1000 раз меньше, сем у ядерных сил.

Открытие радиоактивности и результаты опытов Резерфорда убедительно показали, что атомы состоят из частиц. Как было установлено, они состоят из электронов, протонов и нейтронов. Первое время частицы, из которых построены атомы, считались неделимыми. Поэтому их назвали элементарными частицами. Представление о «простом» устройстве мира разрушилось, когда в 1932 году открыли античастицу электрона – частицу, которая имела макую же массу, что и электрон, но отличается от него знаком электрического заряда. Эту положительно заряженную частицу назвали позитроном.. согласно современным представлениям у каждой частицы есть античастица. Частица и античастица имеют одинаковою массу, но противоположные знаки всех зарядов. Если античастица совпадает с самой частицей, то такие частицы называют истинно нейтральными, заряд их равен 0. Например, фотон. Частица и античастица при столкновении аннигилируют, то есть исчезают, превращаясь в другие частицы (часто этими частицами является фотон).

Все элементарные частицы (которые нельзя разделить на составные) делятся на 2 группы: фундаментальные (бесструкaтурные частицы, все фундаментальные частицы на данном этапе развития физики считаются бесструктурными, то есть не состоят из других частиц) и адроны (частицы, имеющие сложное строение).

Фундаментальные частицы в свою очередь делятся на лептоны, кварки и переносчики взаимодействий. Адроны делятся на барионы и мезоны. К лептонам относятся электрон, позитрон, мьюон, таон, три типа нейтрино.

К кварками называют частицы, из которых состоят все адроны. Участвуют в сильном взаимодействии.

Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемые переносчиками этого взаимодействия: фотон (частица, переносящая электромагнитное взаимодействие), восемь глюонов (частиц, переносящих сильное взаимодействие), три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие, гравитон (переносчик гравитационного взаимодействия). Существование гравитонов пока не доказано экспериментально.

Адроны участвуют во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: барионы, состоящие из трех кварков, и мезоны, состоящие из двух кварков, один из которых является антикварком.

Самое сильное взаимодействие – это взаимодействие между кварками. Протон состоит из 2 u кварков одного d кварка, нейтрон из одного u кварка и 2 d кварков. Оказалось, что на очень малых расстояниях ни один из кварков не замечает соседей, и они ведут себя как свободные, невзаимодействующие между собой частицы. При удалении кварков друг от друга между ними возникает притяжение, которое с увеличением расстояния возрастает. Чтобы разделить адроны на отдельные изолированные кварки потребовалась бы большая энергия. Так как такой энергии нет, то кварки оказываются вечными пленниками и навсегда остаются запертыми внутри адрона. Кварки удерживаются внутри адрона глюонным полем.

III . Закрепление

Вариант 1.

Вариант 2.

3.. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Итог урока. На уроке познакомились частицами микромира, выяснили, какие частицы называются элементарными.

    Д/з § 9.3

Название частицы

Масса (в электронных массах)

Электрический заряд

Время жизни (с)

Античастица

Стабилен

Нейтрино электронное

Стабильно

Нейтрино мюонное

Стабильно

Электрон

Стабильн

Пи-мезоны

≈ 10 –10 –10 –8

Эта-нуль-мезон

Стабилен

Лямбда-гиперон

Сигма-гипероны

Кси-гипероны

Омега-минус-гиперон

III . Закрепление

    Назовите основные взаимодействия, которые существую в природе

    Чем отличаются частица и античастица? Что у них общего?

    Какие частицы участвую в гравитационном, электромагнитном, сильном и слабом взаимодействиях?

Вариант 1.

1. Одно из свойств элементарных частиц – способность……… А. превращаться друг в друга Б. самопроизвольно видоизменятся

2.Частицы, которые могут существовать в свободном состоянии неограниченное время, называются….. А. нестабильными Б. стабильными.

3. Какая частица является стабильной? А. протон Б. мезон

4. Частица, являющаяся долгожителем. А. нейтрино Б. нейтрон

5.Нейтрино получается в результате распада….. А. электрона Б. нейтрона

Вариант 2.

    Что является главным фактором существования элементарных частиц?

А. взаимное их проникновение Б. взаимное их превращение.

2. Какая из элементарных частиц не выделена в свободную частицу. А. пион Б. кварки

3. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Какая из частиц не является стабильной. А. фотон Б. лептон

    Существуют ли в природе неизменные частицы? А. да Б. нет

Аристотель считал вещество непрерывным, - т.е. любой кусок вещества можно бесконечно дробить на все меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы не делилась. Однако, другие древнегреческие философы, например, Демокрит, придерживались мнения, что материя имеет зернистую структуру и что все в мире состоит из большого числа разных атомов. Проходили века, но продолжался бездоказательный спор как с той, так и с другой стороны. Спор этот длился до начала нашего века, пока английский физик Джозефер Томсон (1856-1940) не открыл в 1897г. простейшую элементарную частицу материи - электрон. Вскоре стало ясно, что электроны должны вылетать из атомов. В 1911г. английский физик Эрнст Резерфорд , доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из положительно заряженного ядра и отрицательно заряженных электронов.

Сначала предполагали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами. Однако, в 1932 г. Джеймс Чэдвик обнаружил, что в ядре есть еще и другие частицы -нейтроны, масса которых почти равна массе протона, но которые не заряжены.

Как говорилось выше, частицы могут себя вести подобно волне (корпускулярно-волновой дуализм). Открытие волновой природы электрона раскрыло новый, своеобразный мир явлений. Изящная теория электрона была предложена выдающимся физиком-теоретиком П.Дираком в 1928 г. Эта теория дает нам возможность определить, когда электрон сходен с частицей, а когда - с волной. Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица (или античастица) была обнаружена и названа позитроном. Из теории Дирака также следовало, что позитрон и электрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, т.е. квантов электромагнитного излучения. Возможен и обратный процесс {процесс рождения), когда фотон, взаимодействуя с ядром, превращается в пару электрон-позитрон. Кроме того, электрон и позитрон могут возникать и исчезать не только совместно, но и по отдельности - при взаимных превращениях нейтронов и протонов или их античастиц, т.е. антинейтронов и антипротонов.

Характерное для волновой механики (механика, которая рассматривает частицу как волну) вероятностное распределение рассматриваемых частиц (каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определенном объеме) относится не только к электрону. В случае атомных ядер оно позволяет составляющим эти ядра нуклонам (т.е. протонам и нейтронам) "просачиваться" через непреодолимый для них потенциальный барьер наружу - этотак называемый квантово-механический туннельный эффект.

Еще лет двадцать пять тому назад протоны и нейтроны считались элементарными частицами, но эксперименты по взаимодействию движущихся с большими скоростями протонов (нейтронов) и электронов показали, что на самом деле протоны и нейтроны состоят каждый из трех еще более мелких частиц. Впервые исследовал эти частицы американский физик-теоретик М. Гелл-Манн. Он назвал их кварками.

Известно несколько разновидностей кварков: предполагают, что существует по крайней мере шесть ароматов, которым отвечают u- кварк, d - кварк, s-кварк, c-кварк, b-кварк и t-кварк. Кварк каждого аромата может иметь еще и один из трех цветов - красный, зеленый, синий.. Это просто обозначения и цвета в обычном смысле слова у них нет. Итак, мы узнали, что ни атомы, ни находящиеся внутри атома протоны с нейтронами не являются неделимыми, а потому возникает вопрос: "Что же такое настоящие элементарные частицы?”

Поскольку длины световых волн значительно больше размеров атома, у нас нет надежды "увидеть" составные части атома обычным способом. Для этой цели необходимы значительно меньшие длины волн.

Согласно квантовой механике, все частицы являются еще и волнами и чем выше энергия частицы, тем меньше соответствующая длина волны. Следовательно, ответ на поставленный вопрос зависит от того, насколько высока энергия частиц, имеющихся в нашем распоряжении, потому что этой энергией и определится, насколько малы масштабы тех длин, которые мы сможем наблюдать.

Таким образом, разгоняя частицы в ускорителях (например, в
синхрофазотроне) мы получим значительные энергии. Взаимодействуя с
другими частицами, эти высокоэнергетические частицы позволяют "заглянуть
вглубь" тех частиц, которые считаются элементарными. Так физики узнали,
что частицы, которые лет двадцать назад считались элементарными, на самом
деле состоят из меньших частиц. А что если при переходе к еще более высоким
энергиям окажется, что и эти меньшие частицы, в свою очередь, состоят из
еще меньших? Когда эта цепочка оборвется? Правда ученые, работающие в
области физики элементарных частиц, считают, что наука уже владеет или
почти владеет сведениями об исходных "кирпичиках", из которых построено
все в природе: это кварки и электроны.

Теперь поговорим о некоторых характеристиках элементарных
частиц.
Они имеют вращательную характеристику - спин . Понятие о спине можно получить из такого простого представления: возьмем детскую игрушку – волчок (юлу), поставим его вертикально и отпустим, волчок падает. Но если волчок предварительно раскрутить, то он будет располагаться вертикально. Это говорит о том, что у вращающегося тела появляется новое свойство, новое качество – способность сохранять в пространстве направление оси вращения. Вот это новое свойство и характеризуют понятием спин.

Все известные частицы во Вселенной в зависимости от спина частицы можно разделить на две группы: фермионы - частицы со спином 1/2, из которых состоит любое вещество во Вселенной (нейтроны, протоны, кварки, легкие частицы - лептоны и тяжелые частицы - гипероны) и бозоны - частицы со спином 0, 1 и 2, которые создают силы, действующие между частицами вещества (фотоны и частицы под общим названием - мезоны). Частицы вещества (фермионы) подчиняются принципу запрета Паули, открытому в 1925 г. австрийским физиком Вольфгангом Паули. Принцип Паули гласит, что две одинаковые частицы не могут существовать в одном и том же состоянии, т.е. не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределенности. Если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными и, следовательно, они не смогут долго находиться в точках с этими координатами. Если бы при возникновении Вселенной не учитывался принцип Паули, кварки не могли бы объединиться в единые, четко определенные частицы - нейтроны и протоны, а те, в свою очередь, не смогли бы вместе с электронами образовать отдельные, четко определенные атомы. Без принципа Паули все эти частицы сколлапсировали бы и превратились в более или менее однородное "желе".

В квантовой механике предполагается, что все силы или взаимодействия между частицами вещества переносятся частицами с целочисленным спином, равным 0, 1 или 2. Это происходит следующим образом. Частица вещества, например, электрон или кварк, испускает другую частицу, которая является переносчиком взаимодействия (например, фотон). В результате отдачи скорость частицы вещества меняется. Затем частица-переносчик "налетает" на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как будто между этими двумя частицами вещества действует сила. Частицы-переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что в отличие от "реальных" их нельзя непосредственно зарегистрировать при помощи детектора частиц. Однако они существуют, потому что они создают эффекты, поддающиеся измерению.

Частицы-переносчики можно классифицировать на четыре типа в зависимости от величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействовали.

1.Первая разновидность - гравитационная сила. Это означает, что любые тела, обладающие массой, взаимодействуют между собой. Это очень слабая сила, зависящая от масс взаимодействующих тел и от расстояния между ними, которую мы вообще не заметили бы, если бы не два ее специфических свойства: гравитационные силы действуют и на больших расстояниях и всегда являются силами притяжения.

В квантово-механическом подходе к гравитационному полю считается, что гравитационная сила, действующая между двумя частицами материи, переносится частицей со спином 2, которая называется гравитоном. Гравитон не обладает собственной массой и поэтому переносимая им сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Земля и Солнце, обмениваются гравитонами. Несмотря на то, что в обмене участвуют лишь виртуальные частицы, создаваемый ими эффект безусловно поддается измерению, потому что этот эффект - вращение Земли вокруг Солнца. Пока гравитоны.зарегистрировать не удалось, они остаются гипотетическими частицами, но в их существовании физики не сомневаются.

2. Следующий этап взаимодействия создается электромагнитными силами, которые действуют между электрически заряженными частицами, но не отвечают за взаимодействие таких незаряженных частиц как нейтроны. Электромагнитные взаимодействия гораздо сильнее гравитационных: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. В отличие от гравитационных сил, которые являются силами притяжения, одинаковые по знаку заряды отталкиваются, разноименно заряженные - притягиваются. Переносчиками электромагнитного взаимодействия являются фотоны.

3. Взаимодействие третьего типа называется слабым взаимодейст­вием. Оно отвечает за распад элементарных частиц, за радиоактивность и существует между всеми частицами вещества со спином 1/2, но в нем не участвуют частицы со спином 0 и 2 -фотоны и гравитоны.

В 1967 г. английский физик-теоретик Абдус Салам и американский физик из Гарварда Стивен Вайнберг одновременно предложили теорию, которая объединяла слабое взаимодействие с электромагнитным. Вайнберг и Салам высказали предположение о том, что в дополнение к фотону существует еще три частицы со спином 1, которые вместе называются промежуточным векторным бозоном и являются переносчиками слабого взаимодействия. Эти бозоны были обозначены символами W + , W - и Z 0 . Массы бозонов предсказывались большими, чтобы создаваемые ими силы имели очень маленький радиус действия. Примерно через десять лет предсказания, полученные в теории Вайнберга-Салама, подтвердились экспериментально.

4. Сильное ядерное взаимодействие представляет собой взаимодейст­вие четвертого типа, которое удерживает кварки внутри протона и нейтрона, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином 1, которая называется глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. У сильного взаимодействия есть одно необычное свойство - оно обладает конфайнментом (от англ. confinement - ограничение, удержание). Конфайнмент состоит в том, что при попытке разделить протон или нейтрон на отдельные кварки возникают мощнейшие силы притяжения, которые не позволяют это сделать. Следствием конфайнмента является то, что мы не можем наблюдать отдельный кварк или глюон.

После успешного объединения электромагнитного и слабого взаимодействий стали предприниматься попытки соединения этих двух видов с сильным взаимодействием, чтобы в результате получилась так называемая теория великого объединения. Было предложено несколько вариантов таких "великих" теорий.

Конечно, в этом названии есть некоторая доля преувеличения: во-первых, все предложенные теории на самом деле вовсе не такие уж и великие, а во-вторых, они просто не могут объединить в себе все четыре вида взаимодействий по причине того, что совсем не рассматривают гравитацион­ные взаимодействия. Темне менее, такие теории могут стать определенным шагом на пути создания полной теории объединения, охватывающей все взаимодействия. Теории великого объединения "проливают свет" и на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселенной представляется наиболее естественной. Земное вещество, в основном, состоит из протонов, но в нем нет ни антипротонов, ни антинейтронов. Эксперименты с космичес­кими лучами подтверждают, чтото же самое справедливо и для всего вещества в нашей Галактике!

Как уже говорилось, теории великого объединения не включают в себя гравитационное взаимодействие. Гравитационные силы так малы, что их влиянием можно пренебречь, когда мы имеем дело с элементарными частицами или атомами. Однако тот факт, что гравитационные силы являются дальнодействующими, да еще и всегда силами притяжения, означает, что результаты их воздействия всегда суммируются. Следовательно, если имеется достаточное количество вещества, то гравитационные силы могут стать больше всех остальных сил. Вот почему эволюция Вселенной определяется именно гравитацией.

Большинство физиков верят в создание единой теории, в которой все четыре силы оказались бы разновидностью одной.


Можно ли путешествовать во времени? Не мысленно, как это делают писатели-фантасты, а по-настоящему — с помощью определенных технических средств? Или, по крайней мере, построить «хроноскоп», который позволял бы рассматривать детали прошлого подобно тому, как микроскоп позволяет разглядывать мелкие детали в пространстве? Теория относительности научила нас, как ускорять или замедлять время. Теперь, казалось бы, остался один шаг — научиться его поворачивать. Что мешает этому? Только лишь наше неуменье, недостаток знаний или же какие-то фундаментальные законы? Физика XX века уже приучила нас к мысли, что многое из считавшегося ранее принципиально недопустимым может происходить в каких-то особых, специфических условиях. Действительно, формулы теоретической физики подсказывают, что если бы удалось создать генератор лучей, обгоняющих свет, мы смогли бы высвечивать цепочки событий в обратном направлении — от настоящего в прошлое, а опыты на ускорителях элементарных частиц обнаружили явления, где противопоставление прошлого и будущего приводит к неоднозначности. Может, все же удастся создать «машину времени» и «хроноскоп» хотя бы в микромире? Поиском ответов на эти вопросы заняты многие физические лаборатории. В статье рассказывается о проблемах и трудностях, лежащих на этом пути, говорится о теоретических и экспериментальных исследованиях движений со сверхсветовой скоростью.

Скорость и время
В старой, ньютоновской физике время абсолютно — показания часов не зависят ни от скорости их движения, ни от каких-либо других причин. Часы на башне собора и в движущемся дилижансе всегда показывают одно и тo же время. Иначе ведет себя время в современной физике быстро движущихся тел. Стрелки перемещающихся часов идут медленнее неподвижных, их отставание будет тем заметнее, чем больше скорость движения.
Правда, даже для космических кораблей, пересекающих сегодня просторы космоса, отставание времени еще очень мало и станет ощутимым, когда их скорости возрастут по крайней мере в. несколько сот раз. Но вот в мире элементарных частиц эффект замедления времени весьма заметен. Например, время жизни покоящегося мю-мезона — около миллионной доли секунды, ничтожный миг; далее мю-мезон распадается на более легкие частицы. Однако быстрый мю-мезон, рожденный космической частицей в высотных слоях атмосферы, становится долгожителем. Он живет так долго, что успевает пройти сквозь всю толщу воздуха и распадается лишь глубоко под землей. Пользуясь эффектом замедления времени, физики транспортируют пучки ускоренных коротко-живущих частиц на большие расстояния. Подобное оборудование имеется во многих физических лабораториях.
Если движется не только наблюдаемое тело, но и сам наблюдатель, то его скорость тоже влияет на длительность происходящих с телом событий. Например, длительность события будет различной в зависимости от того, наблюдают его с космодрома или с борта стремительно летящей ракеты. Однако порядок событий, то есть какое из них произошло раньше, а какое позднее, во всех случаях остается неизменным. Выбором системы координат — движущейся или неподвижной — можно сократить или, наоборот, растянуть продолжительность события, но направление времени изменить нельзя.
Для объяснения наблюдаемой в опытах зависимости времени (и размеров тел) от скорости движения в начале нашего века была создана новая наука — теория относительности, само название которой говорит об относительности определения физических величин. Эта теория прекрасно согласуется с экспериментом и является фундаментом современной физики.
Хотя теория относительности создана на основе «досветовых явлений», протекающих со скоростями меньшими или равными скорости света, в её формулах нет никаких условий или ограничений, запрещающих их применение в «засветовой области» — при сверхсветовых скоростях. И вот тут обнаружилась замечательная особенность этих формул. Они приводят к заключению, что в процессах с участием «сверхсветовых тел» от скорости зависит не только длительность, но и сам временной порядок событий! Пилот одной ракеты скажет, что событие А произошло раньше события Б, а пилот второй ракеты, движущейся с иной скоростью, увидит их в обратном порядке. Время для этих наблюдателей будет идти в противоположных направлениях. То, что для одного — прошлое, для другого — будущее. Это похоже на то, как если бы в кино прокрутили пленку в обратном направлении. И нельзя сказать, какое направление времени истинное, как нельзя установить, какая сторона является правой, а какая — левой. Для меня это — правая, а для стоящего лицом ко мне человека — левая. И мы оба правы — относительность!
Временная динамика сверхсветовых явлений разительно отличается от того, к чему мы привыкли в «досветовом мире». В процессах, протекающих быстрее света, подходящим выбором системы координат можно обратить время вспять. Получается, что сверхсветовые частицы — это объекты, свободно путешествующие во времени. Давняя мечта фантастов!
Но вот существуют ли в природе такие частицы? Как и где следует их искать? И вообще, не приводит ли предположение о сверхсветовых скоростях к противоречию с другими положениями современной физической теории, ведь не все же гипотезы физиков реализуются в природе... С другой стороны, если сверхсветовых скоростей нет, то это, в свою очередь, потребует объяснения: может быть, за этим кроется какой-то новый физический закон?

Факты и предположения
Недавно мне попал в руки научно-фантастический роман С. Снегова «Люди как боги». Там звездолеты летают с любыми скоростями в пять, десять, сто раз быстрее света! Среди созвездий они ведут себя, как грузовик на узкой улице: развернулся в созвездии Персея, задним ходом углубился в соседнее шаровое скопление, оттуда устремился в созвездие Плеяд... Феерическая картина! А собственно, почему это невозможно?
Правда, в любом учебнике физики можно найти утверждение, что в природе существует некоторая максимальная скорость. Это скорость света в вакууме. Считается, что ни одно тело не может двигаться быстрее. Однако это всего лишь постулат, теоретическая гипотеза. То, что в эксперименте еще никогда не встречались сверхсветовые скорости, нельзя рассматривать как их стопроцентный запрет. Не встречались при одних условиях, могут встретиться при других. Пока не найдены законы, которые это исключают, вопрос остается открытым.
Большинство физиков сегодня склоняется к мнению, что сверхсветовых скоростей в природе нет, тем не менее вопрос продолжает беспокоить. В журналах нет-нет да и снова вспыхивает дискуссия о сверхсветовых явлениях. Мой аспирант составил список статей по этой проблеме, их оказалось более полутора тысяч! И основная часть появилась в журналах в последние десять—пятнадцать лет.
Действительно, что ограничивает скорость движения? Ведь скорость света, мгновенная по сравнению со скоростями, с которыми нам приходится иметь дело в нашей повседневной жизни, оказывается весьма скромной при переходе к космическим масштабам. Даже с аппаратами, исследующими ближайшие к нам планеты Солнечной системы, обмен сигналами происходит уже с весьма заметным запаздыванием. Неужели нельзя передвигаться и передавать информацию быстрее?
Чтобы разобраться в этих сложных вопросах, познакомимся сначала со свойствами, которыми должны обладать сверхсветовые частицы и состоящие из них тела. Это поможет выявить трудности, к которым приводит гипотеза сверхсветовых движений.

Зазеркалье скоростей
Частицы, движущиеся со скоростями, большими скорости света, принято называть тахионами — от греческого слова «тахис», что означает «быстрый», «стремительный». Досконально изучить их свойства можно будет после того, как такие частицы откроют на опыте. Однако некоторые их особенности можно предсказать теоретически на основе уже известных физических законов. Один из них — взаимосвязь массы и скорости частицы.
При обычных условиях эта взаимосвязь чрезвычайно слабая, и мы ее просто не замечаем. Однако если скорость тела становится сравнимой по своей величине со скоростью света, масса тела начинает возрастать, и дальнейшее увеличение скорости требует затрат все большей и большей энергии. Это явление называют световым барьером. Приближаться к нему так же трудно, как трудно подниматься на крутую гору путнику, имеющему за плечами рюкзак, тяжелеющий с каждым метром подъема. Чтобы достичь скорости света, разгоняя какие-либо частицы, например легкие электроны, пришлось бы затратить бесконечное количество энергии.
Казалось бы, это исключает всякие надежды на открытие сверхсветового вещества. Долгое время так и считали. Однако если посмотреть внимательнее, то можно заметить, что на самом деле отсюда вытекает лишь невозможность превращения обычных, досветовых частиц в тахионы путем непрерывного увеличения скорости. Но возможен взгляд и с другой стороны. Подобно тому как нейтрино и фотоны уже при самом их рождении обладают световой скоростью, тахионы должны иметь сверхсветовую скорость с самого момента их появления. Это означает, что тахионы — частицы совершенно нового типа. Они никогда не переходят через световой барьер на нашу, досветовую сторону. Они рождаются, живут и исчезают, всегда обладая скоростью, большей скорости света. Впервые на это обстоятельство лет двадцать назад обратил внимание советский физик Я. П. Терлецкий. Это поставило проблему. тахионов на твердую почву. После этого, собственно, и началось серьезное изучение их свойств.
Заметьте, обычные частицы приближаются к световому барьеру, когда их скорость возрастает, а тахионы, наоборот,— при уменьшении скорости. Если на классной доске провести мелом вертикальную линию и считать, что это — световой барьер, то слева будет область досветовых частиц, справа — область тахионов. На самом барьере масса и энергия очень велики, при удалении от него вправо или влево они уменьшаются. Световой барьер напоминает энергетическую горку со спусками в сторону меньших и больших скоростей. Теряя энергию, обычная частица замедляется, а тахион, напротив, ускоряется! Шарик из тахионного вещества, скатываясь с горки, теряет скорость — тормозится, падающее сверху тахионное яблоко будет замедляться. Зато сверхсветовая пуля под действием сопротивления воздуха должна, как это ни удивительно... разгоняться! По сравнению с обычными частицами кинематические свойства сверхсветовых частиц оказываются буквально вывернутыми наизнанку!
Мир тахионов — своеобразный антимир скоростей, своего рода Зазеркалье. Зазеркалье скоростей.
Однако этим дело не кончается. У сверхсветовых частиц есть еще несколько удивительных особенностей.

Скорость из ничего, частицы-призраки и другие чудеса сверхсветового мира
Знаменитый,враль барон Мюнхаузен однажды сам себя вытащил из болота, за волосы. Так сказать, приобрел скорость из ничего, без всякой внешней силы — с точки зрения физики, явление абсолютно невозможное. Но тахионы, по-видимому, умеют это делать. Они способны самоускоряться. Например, если электрон движется в среде со скоростью, большей так называемой фазовой скорости света (она равна скорости света в вакууме, деленной на показатель преломления среды), то в этой среде возникает специфическое электромагнитное излучение, называемое во всем мире черенковским — по имени открывшего его советского физика П. А. Черенкова. Тахионы, по-видимому, должны вызывать черенковское излучение даже в вакууме, поскольку их скорость всегда больше скорости света. Это излучение уменьшает энергию тахиона и, следовательно, увеличивает его скорость. Иначе говоря, тахион самоускоряется — сам по себе, без всякой внешней силы, разгоняется в пустом пространстве.
Ускоряться за счет потери энергии! Опять все не так, «как у людей»!
Правда, не все физики согласны с этим выводом. Некоторые из них приводят соображения в пользу того, что тахионы все же не должны излучать в вакууме. Пока не ясно, кто прав. Рассудить, наверное, сможет лишь эксперимент. Предпринимавшиеся до сих пор поиски черенковского излучения тахионов не увенчались успехом. Никаких излучений в вакууме не обнаружено. Впрочем, не ясно, были ли вообще там тахионы. Опыт ставился так, что если бы удалось заметить излучение, тогда можно было бы с уверенностью говорить о сверхсветовых частицах, излучение служило бы сигналом их присутствия. Если же излучения нет, то вывод неоднозначен: либо тахионы не излучают, либо их вообще не было в данном опыте. Так что окончательный ответ еще впереди.
Как уже говорилось выше, время жизни нестабильной частицы возрастает при увеличении ее скорости. А вот пространственные размеры, ее длина в направлении движения при этом уменьшается — частица сжимается, становится похожей на лепешку. Конечно, как и замедление времени, этот эффект становится заметным только при очень больших скоростях. Так, летящий скоростной самолет, по сравнению с его длиной на аэродроме, сжимается на величину приблизительно в сотню тысяч раз меньшую толщины человеческого волоса. Ракета, выводящая на орбиту спутник, сокращается в своей длине примерно на один микрон. Другое дело, если бы она двигалась со скоростью, равной половине скорости света или чуть больше. Тогда изменение ее размеров составляло бы уже около десятка метров.
Нельзя не признать, что с позиций обыденного опыта увеличение времени жизни и сокращение длин движущихся предметов выглядят весьма непривычно. Но еще удивительнее ведут себя сверхсветовые тела. Формулы теории относительности предсказывают, что продольные размеры разгоняющегося тахиона растут,— по отношению к неподвижному наблюдателю сверхсветовая частица как бы распухает вдоль оси своего движения, а течение времени по неподвижным часам резко убыстряется. В пределе, при бесконечно большой скорости, тахион вытягивается по всей бесконечно длинной траектории. Его масса| и энергия при этом становятся равными нулю. Опять все наоборот по сравнению с обычными частицами!
Отдав всю энергию, тахион становится безынерционной струей материи, распределенной сразу вдоль всей своей траектории. Можно сказать и по-другому: тахион с бесконечной скоростью находится сразу во всех точках своей траектории и проскакивает ее мгновенно. А это означает, что тахион существует только в один-единственный момент, а в остальное время его нельзя обнаружить ни в одной точке пространства. И может случиться так, что, начав двигаться, находящийся в абсолютно пустом пространстве наблюдатель вдруг обнаружит, что пространство вокруг него заполнено тахионами. Число частиц оказывается зависящим от скорости наблюдателя. Изменяя скорость ракеты, космонавт каждый раз будет видеть вокруг себя различную плотность материи. Тахионы, как призраки в старом английском замке, то исчезают, то вдруг вновь появляются будто из ничего. Согласитесь, эффект более удивительный, чем «простая» зависимость длины предметов от скорости!
Самоускорение, распухание, размазывание по всей траектории — это действительно очень непривычные и странные свойства. Однако «странно»— не значит «нельзя». К необычным явлениям и свойствам можно привыкнуть. Важно, что сами по себе они не противоречат фундаментальным законам природы.
Значительно более серьезные трудности связаны с беспричинными сверхсветовыми процессами. Оказывается, и такие возможны для тахионов!

Проблема причинности
Первоначально физикам казалось, что вопиющим противоречием является уже сам факт изменения временного порядка в процессах с тахионами. Ведь если, например, один наблюдатель зафиксировал, что тахион испущен атомом урана и поглощен атомом серы, то другой наблюдатель может увидеть, что атом серы поглощает тахион, который еще только будет испущен ураном. Явная бессмыслица!
Выход нашел работающий ныне в США пакистанский физик Сударшан. Он учел, что любому процессу с элементарными частицами всегда соответствует обратный, в котором частицы заменены на античастицы. Такая симметрия хорошо проверена на опыте. С формальной точки зрения прямой и обратный процессы можно объединить вместе, если античастицы рассматривать как частицы, движущиеся обратно по времени. А раз так, то допустимо считать, что второй наблюдатель увидит процесс, в котором атом серы испускает антитахион, а атом урана его поглощает. И никакого противоречия нет.
Тем не менее если судить «по большому счету», то противоречия все же остаются. Дело в том, что ни один сверхсветовой процесс нельзя изолировать от окружающей «досветовой» обстановки. Это можно сделать лишь в теории, а в реальном мире всякое явление бесконечным числом связей скреплено с окружающими телами. Полностью отгородиться от них невозможно. Так устроен мир. Неисчерпаемость свойств и взаимосвязей — одна из основных его характеристик. Поэтому изменение направления времени в сверхсветовом процессе неизбежно приходит в противоречие со «стрелой времени», определяемой движением досветовых тел и происходящими с ними событиями. При этом возникают похожие на чудо ситуации, в которых нарушена причинная связь событий. Следствие может опередить вызывающую его причину!
Допустим, например, что охотник тахионной пулей поражает сидящую на столбе ворону. Космонавт же в иллюминатор пролетающей мимо ракеты увидит, что по какой-то непонятной причине из вороны вылетела тахионная пуля, которая была поймана ружьем охотника. А главное, тот каким-то образом заранее точно знал, в какую сторону и под каким углом ему следует направить ствол ружья, чтобы поймать шарик тахионного вещества! Космонавту все это покажется подлинным чудом.
Как избавиться от нарушений причинности в процессах с тахионами — остается неясным. Недавно итальянским физикам удалось показать, что нарушение причинности всегда сопровождается нарушением законов сохранения энергии и импульса. Другими словами, если требовать точного выполнения этих законов, то нарушающие причинность взаимодействия просто не должны осуществляться, и физическое тело по отношению к тахионам будет вести себя как абсолютно прозрачное. К сожалению, это не устраняет всех противоречий. Итальянские ученые предполагали, что тахион взаимодействует сразу со всем телом. Однако если невозможно взаимодействие тахиона с телом как целым, то может произойти взаимодействие с его частью или наоборот, и трудность с причинностью остается.
Результат итальянских физиков можно считать теоретическим доказательством того, что в больших, макроскопических областях пространства и времени тахионов нет, так как иначе нарушалась бы не только причинность, но и законы сохранения энергии-импульса. И тахионы, если они все же существуют в природе, по-видимому, не могут выходить за пределы ультрамалых пространственно-временных областей, где нельзя установить строгой временной последовательности событий. Зависимость временного порядка от системы координат в этом случае, уже не будет нарушать причинность. Опыты с распадами элементарных частиц действительно указывают, что в субмикроскопических областях, меньших 10~17 сантиметра и 10~27 секунды, противопоставление прошлого и будущего становится весьма неопределенным или же имеет смысл, весьма далекий от того, к чему мы привыкли в нашем микромире.
При этом, конечно, возникает вопрос — что же удерживает тахионы в ультрамалых областях, не дает им разлетаться? Тахионы останутся там запертыми, если, например, они — короткоживущие частицы и обладают способностью самоускоряться. Их время жизни уменьшается с увеличением скорости, поэтому, самоускоряясь, они будут распадаться почти сразу же вблизи точки своего рождения. Могут быть и другие причины «пленения» сверхсветового вещества — природа неистощима на выдумки.
Как бы там ни было, в настоящее время нет никаких — ни философских, ни «чисто физических»— запретов участию тахионов в явлениях микромира и, соответственно, обращению там направления времени. А вот существуют ли они на самом деле, такие удивительные объекты и явления,— здесь слово за экспериментом.

Поиски сверхсветовых эффектов
Понятно, что обнаружить тахионы можно лишь по следам, которые они оставляют в окружающем веществе. Но могут ли вообще частицы со столь необычными свойствами взаимодействовать с обычным, досветовым веществом наших приборов? Некоторые ученые считают, что не могут. Если это так, то тахионы — ненаблюдаемые объекты, а досветовой и сверхсветовой миры оторваны один от другого — у них просто нет точек соприкосновения. Трудно, однако, думать, что в природе, где все взаимосвязано и взаимообусловлено, могут существовать материальные тела, которые ничем себя не проявляют и принципиально не наблюдаемы. Если же между тахионами и досветовым веществом есть взаимодействие, то тахионы должны рождаться при столкновениях досветовых частиц, и можно попытаться зафиксировать их с помощью имеющихся в нашем распоряжении средств.
Таких опытов выполнено уже немало. В ряде случаев отмечались эффекты, которые в принципе можно было бы приписать сверхсветовым частицам. Однако всегда удавалось найти и более привычные объяснения. Например, английские физики изучали распространение ливней вторичных частиц, образуемых в земной атмосфере высокоэнергетическими частицами космического излучения. Во многих ливнях детекторы зафиксировали сигналы, значительно опережающие приход лавины частиц. Этот результат можно объяснить, допустив, что в ливне присутствуют частицы со скоростями намного большими, чем у остальных. А поскольку скорость большинства частиц в ливне близка к скорости света, это, казалось бы, подтверждает присутствие тахионов. К сожалению, более детальный анализ показал, что, сделав некоторые дополнительные предположения, не выходящие за рамки известной досветовой физики, опережающие сигналы детектора можно объяснить причинами технического характера — как неточные, ложные выбросы.
Особенно часто сверхсветовые аномалии возникают в астрономических наблюдениях, где детали движения изучаемых объектов бывают плохо известны. Так, недавно в печати сообщалось о наблюдении астрофизиками Массачусетсского технологического института в США сверхсветовых выбросов из квазаров — излучающих огромную энергию космических объектов на краю видимой нами части Вселенной. Из сравнения двух фотографий, сделанных с интервалом примерно в один год, получен вывод, что выбросы удаляются от квазаров со скоростью, в несколько раз превосходящей световую. Тем не менее последующий анализ обнаружил такие особенности процессов, которые устранили противоречия с «досветовой физикой». Сверхсветовой эффект оказался иллюзией.
Интересный опыт по поиску тахионов в микропроцессах выполнили американские физики. Они допустили, что тахионы взаимодействуют с протонами, мезонами и другими ядерными частицами, но время их жизни чрезвычайно мало. Поэтому следы их рождения можно заметить лишь по специфическим искажениям распределений других частиц по импульсам и углам вылета. При тщательной обработке экспериментальных данных действительно обнаружены некоторые аномалии в распределениях вторичных частиц, рождающихся в реакциях. Эти данные хорошо объяснялись, если предположить, что сталкивающиеся досветовые частицы в ходе реакции обмениваются тахионами с массой, несколько превышающей массу протона, и временем жизни около 10^24 секунды. Однако и в этом случае однозначный вывод о рождении тахионов сделать нельзя — результаты наблюдений можно объяснить и с помощью известных теорий. По мнению выполнявших эксперимент физиков, такое объяснение более сложно, но... срабатывает знаменитая «бритва Оккама»— принцип «не вводить сущностей сверх необходимого». Были выполнены и другие эксперименты. Ни один из них яе дал убедительных доказательств существования в природе сверхсветовых явлений. Но они не доказали и обратного, поскольку во всех опытах есть особенности, которыми можно, хотя бы отчасти, объяснить их неудачу.

Каков же вывод?
Мы видим, что невозможность изменить направление времени уходит своими корнями в самые фундаментальные свойства материального мира,— неисчерпаемость его внутренних взаимосвязей и их причинную обусловленность. В конечном счете, именно эти свойства запрещают путешествия в машине времени, о которых так часто рассказывается в научно-фантастических романах. Наблюдать изменение порядка событий в зависимости от скорости регистрирующих приборов, возможно, удастся лишь внутри субмикроскопических пространственно-временных инвервалов.
Что же касается сверхсветовых скоростей, то здесь дело сложнее,— вообще говоря, они могут быть и в области макроскопических явлений. Не следует забывать, что вывод об их связи с обращением времени получен на основе формул теории относительности, которые могут оказаться несправедливыми вблизи светового барьера, где концентрация энергии возрастает «почти до бесконечности». Абсолютный нуль и бесконечность всегда были источниками новых открытий. В окрестностях светового барьера, возможно, потребуется обобщение теории, тогда условия причинности для сверхсветовых частиц могут стать совсем иными и не будут приводить к противоречиям. Хотя такая возможность сегодня кажется маловероятной, но все же... Вешая знак «кирпич» на дорогах физики, следует быть осторожным. Наука не раз демонстрировала нам, как переход в область новых явлений открывает процессы, казавшиеся ранее совершенно недопустимыми.

Аристотель считал, что вещество во Вселенной состоит из четырех основных элементов – земли, воздуха, огня и воды, на которые действуют две силы: сила тяжести, влекущая землю и воду вниз, и сила легкости, под действием которой огонь и воздух стремятся вверх. Такой подход к строению Вселенной, когда все делится на вещество и силы, сохраняется и по сей день.

По Аристотелю, вещество непрерывно, т. е. любой кусок вещества можно бесконечно дробить на все меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы уже не делилась. Однако некоторые другие греческие философы, например Демокрит, придерживались мнения, что материя по своей природе имеет зернистую структуру и все в мире состоит из большого числа разных атомов (греческое слово «атом» означает неделимый). Проходили века, но спор продолжался без всяких реальных доказательств, которые подтверждали бы правоту той или другой стороны. Наконец, в 1803 г. английский химик и физик Джон Дальтон показал, что тот факт, что химические вещества всегда соединяются в определенных пропорциях, можно объяснить, предположив, что атомы объединяются в группы, которые называются молекулами. Однако до начала нашего века спор между двумя школами так и не был решен в пользу атомистов. В разрешение этого спора очень важный вклад внес Эйнштейн. В своей статье, написанной в 1905 г., за несколько недель до знаменитой работы о специальной теории относительности, Эйнштейн указал на то, что явление, носящее название броуновского движения, – нерегулярное, хаотическое движение мельчайших частичек, взвешенных в воде, – можно объяснить ударами атомов жидкости об эти частички.

К тому времени уже имелись некоторые основания подумывать о том, что и атомы тоже не неделимы. Несколькими годами раньше Дж. Дж. Томсон из Тринити‑колледжа в Кембридже открыл новую частицу материи – электрон, масса которого меньше одной тысячной массы самого легкого атома. Экспериментальная установка Томсона немного напоминала современный телевизионный кинескоп. Раскаленная докрасна металлическая нить служила источником электронов. Поскольку электроны заряжены отрицательно, они ускорялись в электрическом поле и двигались в сторону экрана, покрытого слоем люминофора. Когда электроны падали на экран, на нем возникали вспышки света. Вскоре стало понятно, что эти электроны должны вылетать из атомов, и в 1911 г. английский физик Эрнст Резерфорд наконец доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из крошечного положительно заряженного ядра и вращающихся вокруг пего электронов. Резерфорд пришел к этому выводу, изучая, как отклоняются альфа‑частицы (положительно заряженные частицы, испускаемые атомами радиоактивных веществ) при столкновении с атомами.

Вначале думали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами (от греческого слово «протос» – первичный), потому что протоны считались теми фундаментальными блоками, из которых состоит материя. Однако в 1932 г. Джеймс Чедвик, коллега Резерфорда по Кембриджскому университету, обнаружил, что в ядре имеются еще и другие частицы – нейтроны, масса которых почти равна массе протона, но которые не заряжены. За это открытие Чедвик был удостоен Нобелевской премии и выбран главой Конвилл‑энд‑Кайус‑колледжа Кембриджского университета (колледж, в котором я сейчас работаю). Потом ему пришлось отказаться от этого поста из‑за разногласий с сотрудниками. В колледже постоянно происходили ожесточенные споры, которые начались с тех пор, как после войны группа вернувшейся молодежи проголосовала против того, чтобы старые сотрудники оставались на своих должностях, которые они уже много лет занимали. Все это происходило еще до меня; я начал работать в колледже в 1965 г. и застал самый конец борьбы, когда другой глава колледжа, нобелевский лауреат Невилл Мотт, вынужден был тоже уйти в отставку.

Еще лет двадцать назад протоны и нейтроны считались «элементарными» частицами, но эксперименты по взаимодействию протонов и электронов, движущихся с большими скоростями, с протонами показали, что на самом деле протоны состоят из еще более мелких частиц. Мюррей Гелл‑Манн, теоретик из Калифорнийского технологического института, назвал эти частицы кварками. В 1969 г. за исследование кварков Гелл‑Манн был удостоен Нобелевской премии. Название «кварк» взято из заумной стихотворной строки Джеймса Джойса: «Три кварка для мастера Марка!». По идее, слово quark должно произноситься так же, как слово quart (куорт), в которой буква t на конце заменена буквой k, но обычно его произносят так, что оно рифмуется со словом lark.

Известно несколько разновидностей кварков: предполагают, что существует по крайней мере шесть «ароматов», которым отвечают u‑кварк, d‑кварк, странный кварк, очарованный кварк, b‑кварк и t‑кварк. Кварк каждого «аромата» может быть еще и трех «цветов» – красного, зеленого и синего. (Следует подчеркнуть, что это просто обозначения, так как размер кварков значительно меньше длины волны видимого света и поэтому цвета в обычном смысле слова у них нет. Дело просто в том, что современным физикам нравится придумывать названия новых частиц и явлений, не ограничивая больше свою фантазию греческим алфавитом). Протон и нейтрон состоят из трех кварков разных «цветов». В протоне содержится два u‑кварка и один d‑кварк, в нейтроне – два d‑кварка и один u‑кварк. Частицы можно строить и из других кварков (странного, очарованного, b и t), но все эти кварки обладают гораздо большей массой и очень быстро распадаются на протоны и нейтроны.

Мы уже знаем, что ни атомы, ни находящиеся внутри атома протоны с нейтронами не являются неделимыми, а потому возникает вопрос: что же такое настоящие элементарные частицы – те исходные кирпичи, из которых все состоит? Поскольку длины световых волн существенно больше размеров атома, у нас нет надежды «увидеть» составные части атома обычным способом. Для этой цели необходимы значительно меньшие длины волн. В предыдущей главе мы узнали, что, согласно квантовой механике, все частицы на самом деле являются еще и волнами и чем выше энергия частицы, тем меньше соответствующая длина волны. Таким образом, наш ответ на поставленный вопрос зависит от того, насколько высока энергия частиц, имеющихся в нашем распоряжении, потому что ею определяется насколько мал масштаб тех длин, которые мы сможем наблюдать. Единицы, в которых обычно измеряется энергия частиц, называются электронвольтами. (Томсон в своих экспериментах для ускорения электронов использовал электрическое поле. Электронвольт – это энергия, которую приобретает электрон в электрическом поле величиной 1 вольт). В XIX в., когда умели использовать только частицы с энергиями в несколько электронвольт, выделяющимися в химических реакциях типа горения, атомы считались самыми мелкими частями материи. В экспериментах Резерфорда энергии альфа‑частиц составляли миллионы электронвольт. Затем мы научились с помощью электромагнитных полей разгонять частицы сначала до энергий в миллионы, а потом и в тысячи миллионов электронвольт. Так мы узнали, что частицы, которые двадцать лет назад считались элементарными, на самом деле состоят из меньших частиц. А что если при переходе к еще более высоким энергиям окажется, что и эти меньшие частицы в свою очередь состоят из еще меньших? Конечно, это вполне вероятная ситуация, но у нас сейчас есть некоторые теоретические основания считать, что мы уже владеем или почти владеем сведениями об исходных «кирпичиках», из которых построено все в природе.

Все, что есть во Вселенной, в том числе свет и гравитацию, можно описывать, исходя из представления о частицах, с учетом частично‑волнового дуализма, о котором мы говорили в предыдущей главе. Частицы же имеют некую вращательную характеристику – спин (spin – вращаться, крутиться (англ.). – прим. перев.).

Представим себе частицы в виде маленьких волчков, вращающихся вокруг своей оси. Правда, такая картина может ввести в заблуждение, потому что в квантовой механике частицы не имеют вполне определенной оси вращения. На самом деле спин частицы дает нам сведения о том, как выглядит эта частица, если смотреть на нее с разных сторон. Частица со спином 0 похожа на точку: она выглядит со всех сторон одинаково (рис. 5.1, I). Частицу со спином 1 можно сравнить со стрелой: с разных сторон она выглядит по‑разному (рис. 5.1, II) и принимает тот же вид лишь после полного оборота на 360 град. Частицу со спином 2 можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется после полуоборота (180 град.). Аналогичным образом частица с более высоким спином возвращается в первоначальное состояние при повороте на еще меньшую часть полного оборота. Это все довольно очевидно, а удивительно другое – существуют частицы, которые после полного оборота не принимают прежний вид: их нужно дважды полностью повернуть! Говорят, что такие частицы обладают спином 1/2.

Все известные частицы во Вселенной можно разделить на две группы: частицы со спином 1/2, из которых состоит вещество во Вселенной, и частицы со спином 0, 1 и 2, которые, как мы увидим, создают силы, действующие между частицами вещества. Частицы вещества подчиняются так называемому принципу запрета Паули, открытому в 1925 г. австрийским физиком Вольфгангом Паули. В 1945 г. Паули за свое открытие был удостоен Нобелевской премии. Он являл собой идеальный пример физика‑теоретика: говорят, что одно его присутствие в городе нарушало ход всех экспериментов! Принцип Паули гласит, что две одинаковые частицы не могут существовать в одном и том же состоянии, т. е. не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределенности. Принцип Паули имеет крайне важное значение, так как он позволил объяснить, почему под действием сил, создаваемых частицами со спином 0, 1, 2, частицы материи не коллапсируют в состояние с очень высокой плотностью: если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не смогут долго находиться в точках с этими координатами. Если бы в сотворении мира не участвовал принцип Паули, кварки не могли бы объединиться в отдельные, четко определенные частицы – протоны и нейтроны, которые в свою очередь не смогли бы, объединившись с электронами, образовать отдельные, четко определенные атомы. Без принципа Паули все эти частицы сколлапсировали бы и превратились в более или менее однородное и плотное «желе».

Правильное представление об электроне и других частицах со спином 1/2 отсутствовало до 1928 г., когда Поль Дирак предложил теорию для описания этих частиц. Впоследствии Дирак получил кафедру математики в Кембридже (которую в свое время занимал Ньютон и которую сейчас занимаю я). Теория Дирака была первой теорией такого рода, которая согласовалась и с квантовой механикой, и со специальной теорией относительности. В ней давалось математическое объяснение того, почему спин электрона равен 1/2, т. е. почему при однократном полном обороте электрона он не принимает прежний вид, а при двукратном принимает. Теория Дирака предсказывала также, что у электрона должен быть партнер – антиэлектрон, или, иначе, позитрон. Открытие позитрона в 1932 г. подтвердило теорию Дирака, и в 1933 г. он получил Нобелевскую премию по физике. Сейчас мы знаем, что каждой частице соответствует античастица, с которой она может аннигилировать. (В случае частиц, обеспечивающих взаимодействие, частица и античастица – одно и то же). Могли бы существовать целые антислова и антилюди, состоящие из античастиц. Но встретив антисебя, не вздумайте поздороваться с ним за руку! Возникнет ослепительная вспышка света, и вы оба исчезнете. Чрезвычайно важен вопрос, почему вокруг нас гораздо больше частиц, чем античастиц. Мы к нему еще вернемся в этой главе.

В квантовой механике предполагается, что все силы, или взаимодействия, между частицами вещества переносятся частицами с целочисленным спином, равным 0, 1 или 2. Частица вещества, например электрон или кварк, испускает частицу, которая является переносчиком взаимодействия. В результате отдачи скорость частицы вещества меняется. Затем частица‑переносчик налетает на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как будто между этими двумя частицами вещества действует сила.

Частицы‑переносчики взаимодействия обладают одним важным свойством: они не подчиняются принципу запрета Паули. Это означает отсутствие ограничений для числа обмениваемых частиц, так что возникающая сила взаимодействия может оказаться большой. Но если масса частиц‑переносчиков велика, то на больших расстояниях их рождение и обмен будут затруднены. Таким образом, переносимые ими силы будут короткодействующими. Если же частицы‑переносчики не будут обладать собственной массой, возникнут дальнодействующие силы. Частицы‑переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что в отличие от реальных их нельзя непосредственно зарегистрировать при помощи детектора частиц. Однако мы знаем, что виртуальные частицы существуют, потому что они создают эффекты, поддающиеся измерению: благодаря виртуальным частицам возникают силы, действующие между частицами вещества. При некоторых условиях частицы со спинами 0, 1, 2 существуют и как реальные; тогда их можно непосредственно зарегистрировать. С точки зрения классической физики такие частицы встречаются нам в виде волн, скажем световых или гравитационных. Они иногда испускаются при взаимодействии частиц вещества, протекающем за счет обмена частицами‑переносчиками взаимодействия. (Например, электрическая сила взаимного отталкивания между двумя электронами возникает за счет обмена виртуальными фотонами, которые нельзя непосредственно зарегистрировать. Но если электроны пролетают друг мимо друга, то возможно испускание реальных фотонов, которые будут зарегистрированы как световые волны).

Частицы‑переносчики можно разделить на четыре типа в зависимости от величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействовали. Подчеркнем, что такое разделение совершенно искусственно; это схема, удобная для разработки частных теорий, ничего более серьезного в ней, вероятно, нет. Большинство физиков надеется, что в конце концов удастся создать единую теорию, в которой все четыре силы оказались бы разновидностями одной и той же силы. Многие даже видят в этом главную цель современной физики. Недавно увенчались успехом попытки объединения трех сил. В этой главе я еще собираюсь о них рассказать. О том, как обстоит дело с включением в такое объединение гравитации, мы поговорим немного позже.

Итак, первая разновидность сил – гравитационная сила. Гравитационные силы носят универсальный характер. Это означает, что всякая частица находится под действием гравитационной силы, величина которой зависит от массы или энергии частицы. Гравитация гораздо слабее каждой из оставшихся трех сил. Это очень слабая сила, которую мы вообще не заметили бы, если бы не два ее специфических свойства: гравитационные силы действуют на больших расстояниях и всегда являются силами притяжения. Следовательно, очень слабые гравитационные силы взаимодействия отдельных частиц в двух телах большого размера, таких, например, как Земля и Солнце, могут в сумме дать очень большую силу. Три остальных вида взаимодействия либо действуют только на малых расстояниях, либо являются то отталкивающими, то притягивающими, что приводит в общем к компенсации. В квантово‑механическом подходе к гравитационному полю считается, что гравитационная сила, действующая между двумя частицами материи, переносится частицей со спином 2, которая называется гравитоном. Гравитон не обладает собственной массой, и поэтому переносимая им сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Земля и Солнце, обмениваются гравитонами. Несмотря на то что в обмене участвуют лишь виртуальные частицы, создаваемый ими эффект безусловно поддается измерению, потому что этот эффект – вращение Земли вокруг Солнца! Реальные гравитоны распространяются в виде волн, которые в классической физике называются гравитационными, но они очень слабые, и их так трудно зарегистрировать, что пока это никому не удалось сделать.

Следующий тип взаимодействия создается электромагнитными силами, которые действуют между электрически заряженными частицами, как, например, электроны и кварки, но не отвечают за взаимодействие таких незаряженных частиц, как гравитоны. Электромагнитные взаимодействия гораздо сильнее гравитационных: электромагнитная сила, действующая между двумя электронами, примерно в миллион миллионов миллионов миллионов миллионов миллионов миллионов (единица с сорока двумя нулями) раз больше гравитационной силы. Но существуют два вида электрического заряда – положительный и отрицательный. Между двумя положительными зарядами так же, как и между двумя отрицательными, действует сила отталкивания, а между положительным и отрицательным зарядами – сила притяжения. В больших телах, например в Земле или Солнце, содержание положительных и отрицательных зарядов почти одинаково, и, следовательно, силы притяжения и отталкивания почти компенсируют друг друга, и остается очень малая чисто электромагнитная сила. Однако в малых масштабах атомов и молекул электромагнитные силы доминируют. Под действием электромагнитного притяжения между отрицательно заряженными электронами и положительно заряженными протонами в ядре электроны в атоме вращаются вокруг ядра в точности так же, как под действием гравитационного притяжения Земля вращается вокруг Солнца. Электромагнитное притяжение описывается как результат обмена большим числом виртуальных безмассовых частиц со спином 1, которые называются фотонами. Как и в случае гравитонов, фотоны, осуществляющие обмен, являются виртуальными, но при переходе электрона с одной разрешенной орбиты на другую, расположенную ближе к ядру, освобождается энергия, и в результате испускается реальный фотон, который при подходящей длине волны можно наблюдать человеческим глазом как видимый свет, или же с помощью какого‑нибудь детектора фотонов, например фотопленки. Аналогичным образом при соударении реального фотона с атомом может произойти переход электрона с одной орбиты на другую, более далекую от ядра. Этот переход происходит за счет энергии фотона, который поглощается атомом. Взаимодействие третьего типа называется слабым взаимодействием. Оно отвечает за радиоактивность и существует между всеми частицами вещества со спином 1/2, но в нем не участвуют частицы со спином 0, 1, 2 – фотоны и гравитоны. До 1967 г. свойства слабых сил были плохо изучены, а в 1967 г. Абдус Салам, теоретик из Лондонского Империал‑колледжа, и Стивен Вайнберг из Гарвардского университета одновременно предложили теорию, которая объединяла слабое взаимодействие с электромагнитным аналогично тому, как на сто лет раньше Максвелл объединил электричество и магнетизм. Вайнберг и Салам высказали предположение о том, что в дополнение к фотону существуют еще три частицы со спином 1, которые все вместе называются тяжелыми векторными бозонами и являются переносчиками слабого взаимодействия. Эти бозоны были обозначены символами W+, W– и Z0, масса каждого из них составляла 100 ГэВ (ГэВ означает гигаэлектронвольт, т. е. тысяча миллионов электронвольт). Теория Вайнберга‑Салама обладает свойством так называемого спонтанного нарушения симметрии. Оно означает, что частицы, совершенно разные при низких энергиях, при высоких энергиях оказываются на самом деле одной и той же частицей, но находящейся в разных состояниях. Это в каком‑то смысле похоже на поведение шарика при игре в рулетку. При всех высоких энергиях (т. е. при быстром вращении колеса) шарик ведет себя всегда почти одинаково – безостановочно вращается. Но когда колесо замедлится, энергия шарика уменьшается, и в конце концов он проваливается в одну из тридцати семи канавок, имеющихся на колесе. Иными словами, при низких энергиях шарик может существовать в тридцати семи состояниях. Если бы мы почему‑либо могли наблюдать шарик только при низких энергиях, то считали бы, что существует тридцать семь разных типов шариков!

Теория Вайнберга‑Салама предсказывала, что при энергиях, значительно превышающих 100 ГэВ, три новые частицы и фотон должны вести себя одинаково, а при более низких энергиях частиц, т. е. в большинстве обычных ситуаций, эта «симметрия» должна нарушаться. Массы W+, W– и Z0 бозонов предсказывались большими, чтобы создаваемые ими силы имели очень малый радиус действия. Когда Вайнберг и Салам выдвинули свою теорию, им мало кто верил, а на маломощных ускорителях тех времен невозможно было достичь энергии в 100 ГэВ, необходимой для рождения реальных W+, W– и Z0 частиц. Однако лет через десять предсказания, полученные в этой теории при низких энергиях, настолько хорошо подтвердились экспериментально, что Вайнбергу и Саламу была присуждена Нобелевская премия 1979 г. совместно с Шелдоном Глэшоу (тоже из Гарварда), который предложил похожую единую теорию электромагнитных и слабых ядерных взаимодействии. Комитет по Нобелевским премиям был избавлен от неприятностей, которые могли бы возникнуть, если бы оказалось, что он совершил ошибку сделанным в 1983 г. в ЦЕРНе открытием трех массивных партнеров фотона с правильными значениями массы и другими предсказанными характеристиками. Карло Руббиа, возглавивший группу из нескольких сотен физиков, которым принадлежало это открытие, получил Нобелевскую премию 1984 г., присужденную ему совместно с инженером ЦЕРНа Симоном Ван дер Меером, автором проекта накопителя античастиц, использованного в эксперименте. (В наше время чрезвычайно трудно оставить свой след в экспериментальной физике, разве что вы уже на вершине!).

Сильное ядерное взаимодействие представляет собой взаимодействие четвертого типа, которое удерживает кварки внутри протона и нейтрона, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается еще одна частица со спином 1, которая называется глюоном.

Глюоны взаимодействуют только с кварками и с другими глюонами. У сильного взаимодействия есть одно необычайное свойство – оно обладает конфайнментом (confinement – ограничение, удержание (англ.). – прим. ред.).

Конфайнмент состоит в том, что частицы всегда удерживаются в бесцветных комбинациях. Один кварк не может существовать сам по себе, потому что тогда он должен был бы иметь цвет (красный, зеленый или синий). Поэтому красный кварк должен быть соединен с зеленым и синим посредством глюонной «струи» (красный + зеленый + синий = белый). Такой триплет оказывается протоном или нейтроном. Существует и другая возможность, когда кварк и антикварк объединяются в пару (красный + антикрасный, или зеленый + антизеленый, или синий + антисиний = белый). Такие комбинации входят в состав частиц, называемых мезонами. Эти частицы нестабильны, потому что кварк и антикварк могут аннигилировать друг с другом, образуя электроны и другие частицы. Аналогичным образом, один глюон не может существовать сам по себе из‑за конфайнмента, потому что глюоны тоже обладают цветом. Следовательно, глюоны должны группироваться таким образом, чтобы их цвета в сумме давали белый цвет. Описанная группа глюонов образует нестабильную частицу – глюбол.

Мы не можем наблюдать отдельный кварк или глюон из‑за конфайнмента. Не означает ли это, что само представление о кварках и глюонах как о частицах несколько метафизично? Нет, потому что сильное взаимодействие характеризуется еще одним свойством, которое называется асимптотической свободой. Благодаря этому свойству понятие кварков и глюонов становится вполне определенным. При обычных энергиях сильное взаимодействие действительно является сильным и плотно прижимает кварки друг к другу. Но, как показывают эксперименты на мощных ускорителях, при высоких энергиях сильное взаимодействие заметно ослабевает и кварки и глюоны начинают вести себя почти как свободные частицы. На рис. 5.2 представлен фотоснимок столкновения протона и антипротона высокой энергии. Мы видим, что несколько почти свободных кварков, родившихся в результате взаимодействия, образовали «струи» треков, которые видны на фотографии.

Итогом успешного объединения электромагнитного и слабого взаимодействий стали попытки соединить эти два вида взаимодействий с сильным взаимодействием, чтобы в результате получилась так называемая теория великого объединения. В этом названии есть некоторое преувеличение: во‑первых, теории великого объединения не такие уж великие, а во‑вторых, они не объединяют полностью все взаимодействия, потому что в них не входит гравитация. Кроме того, все эти теории на самом деле неполны, потому что содержат параметры, которые нельзя предсказать теоретически и которые надо вычислять, сравнивая теоретические и экспериментальные результаты. Тем не менее такие теории могут стать шагом к полной теории объединения, охватывающей все взаимодействия. Основная идея построения теорий великого объединения состоит в следующем: как уже говорилось, сильные взаимодействия при высоких энергиях становятся слабее, чем при низких. В то же время электромагнитные и слабые силы асимптотически не свободны, и при высоких энергиях они растут. Тогда при каком‑то очень большом значении энергии – при энергии великого объединения – эти три силы могли бы сравняться между собой и стать просто разновидностями одной и той же силы. Теории великого объединения предсказывают, что при этой энергии разные частицы вещества со спином 1/2, такие, как кварки и электроны, тоже перестали бы различаться, что было бы еще одним шагом к объединению.

Значение энергии великого объединения не очень хорошо известно, но оно должно составлять по меньшей мере тысячу миллионов миллионов ГэВ. В ускорителях современного поколения сталкиваются частицы с энергиями около 100 ГэВ, а в будущих проектах эта величина должна возрасти до нескольких тысяч ГэВ. Но для ускорения частиц до энергии великого объединения нужен ускоритель размером с Солнечную систему. Маловероятно, чтобы в нынешней экономической ситуации кто‑нибудь решился ее финансировать. Вот почему невозможна непосредственная экспериментальная проверка теорий великого объединения. Но здесь, как и в случае электрослабой единой теории, существуют низкоэнергетические следствия, которые можно проверить.

Самое интересное из таких следствии то, что протоны, составляющие большую часть массы обычного вещества, могут спонтанно распадаться на более легкие частицы, такие, как антиэлектроны. Причина в том, что при энергии великого объединения нет существенной разницы между кварком и антиэлектроном. Три кварка внутри протона обычно не обладают достаточным количеством энергии для превращения в антиэлектроны, но один из кварков может совершенно случайно получить однажды энергию, достаточную для этого превращения, потому что в силу принципа неопределенности невозможно точно зафиксировать энергию кварков внутри протона. Тогда протон должен распасться, но вероятность того, что кварк будет иметь достаточную энергию, столь мала, что ждать этого придется по крайней мере миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) лет, что гораздо больше времени, прошедшего с момента большого взрыва, которое не превышает десяти тысяч миллионов лет или что‑то около того (единица с десятью нулями). Отсюда напрашивается вывод, что возможность спонтанного распада протона нельзя экспериментально проверить. Можно, однако, увеличить вероятность наблюдения распада протона, изучая очень большое число протонов. (Наблюдая, например, 1 с тридцатью одним нулем протонов в течение года, можно надеяться обнаружить, согласно одной из простейших теорий великого объединения, более одного распада протона).

Несколько таких экспериментов уже выполнено, но они не дали определенных сведений о распадах протона или нейтрона. Один из экспериментов, в котором использовалось восемь тысяч тонн воды, проводился в соляной шахте штата Огайо (для того, чтобы исключить космические помехи, которые можно принять за распад протона). Поскольку в течение всего эксперимента не было зарегистрировано ни одного распада протона, можно вычислить, что время жизни протона должно быть больше, чем десять миллионов миллионов миллионов миллионов миллионов (единица с тридцатью одним нулем) лет. Этот результат превышает предсказания простейшей теории великого объединения, но есть и более сложные теории, дающие более высокую оценку. Для их проверки потребуются еще более точные эксперименты с еще большими количествами вещества.

Несмотря на трудности наблюдения распада протона, не исключено, что само наше существование есть следствие обратного процесса – образования протонов или, еще проще, кварков на самой начальной стадии, когда кварков было не больше, чем антикварков. Такая картина начала Вселенной представляется наиболее естественной. Земное вещество в основном состоит из протонов и нейтронов, которые в свою очередь состоят из кварков, но в нем нет ни антипротонов, ни антинейтронов, состоящих из антикварков, если не считать те несколько штук, которые были получены на больших ускорителях. Эксперименты с космическими лучами подтверждают, что то же самое справедливо и для всего вещества в нашей Галактике: в нем нет ни антипротонов, ни антинейтронов, за исключением того небольшого количества античастиц, которое возникает в результате рождения пар частица‑античастица в соударениях частиц при высоких энергиях. Если бы в нашей Галактике были большие участки антивещества, то можно было бы ожидать сильного излучения на границах раздела вещества и антивещества, где возникало бы множество соударений частиц и античастиц, которые, аннигилируя, испускали бы излучение высокой энергии.

У нас нет прямых указаний на то, состоит ли вещество других галактик из протонов и нейтронов или из антипротонов и антинейтронов, но оно должно состоять из частиц одного типа: в пределах одной галактики не может быть смеси частиц и античастиц, потому что в результате их аннигиляции испускалось бы мощное излучение. Поэтому мы считаем, что все галактики состоят из кварков, а не из антикварков; вряд ли одни галактики состояли из вещества, а другие – из антивещества.

Но почему кварков должно быть настолько больше, чем антикварков? Почему число их не одинаково? Нам очень повезло, что это так, потому что если бы кварков и антикварков было поровну, то почти все кварки и антикварки проаннигилировали бы друг с другом в ранней Вселенной, наполнив ее излучением, но едва ли оставив хоть какое‑нибудь вещество. Не было бы ни галактик, ни звезд, ни планет, на которых могла бы развиваться человеческая жизнь. С помощью теорий великого объединения можно объяснить, почему во Вселенной кварков должно быть сейчас больше, чем антикварков, даже в том случае, если в самом начале их было поровну. Как мы уже знаем, в теориях великого объединения при высоких энергиях кварки могут превращаться в антиэлектроны. Возможны и обратные процессы, когда антикварки превращаются в электроны, а электроны и антиэлектроны – в антикварки и кварки. Когда‑то на очень ранней стадии развития Вселенной она была такой горячей, что энергии частиц было достаточно для подобных превращений. Но почему же в результате кварков стало больше, чем антикварков? Причина кроется в том, что законы физики не совсем одинаковы для частиц и античастиц.

До 1956 г. считалось, что законы физики инвариантны относительно трех преобразований симметрии – C, P и T. Симметрия С означает, что все законы одинаковы для частиц и античастиц. Симметрия P означает, что законы физики одинаковы для любого явления и для его зеркального отражения (зеркальным отражением частицы, вращающейся по часовой стрелке, будет частица, вращающаяся против часовой стрелки). Наконец, смысл симметрии Т состоит в том, что при изменении направления движения всех частиц и античастиц на обратное система вернется в то состояние, в котором она находилась раньше; иными словами, законы одинаковы при движении во времени вперед или назад.

В 1956 г. два американских физика, Тзундао Ли и Чженьнин Янг, высказали предположение, что слабое взаимодействие на самом деле не инвариантно относительно Р‑преобразований. Иными словами, в результате слабого взаимодействия развитие Вселенной может пойти иначе, чем развитие ее зеркального изображения. В том же году Цзиньсян By, коллега Ли и Янга, сумела доказать, что их предположение правильно. Расположив в магнитном поле ядра радиоактивных атомов так, чтобы их спины были направлены одинаково, она показала, что электронов вылетает больше в одном направлении, чем в другом. В следующем году Ли и Янг за свое открытие были удостоены Нобелевской премии. Оказалось, что слабые взаимодействия не подчиняются и симметрии С. Это означает, что Вселенная, состоящая из античастиц, будет вести себя иначе, чем наша Вселенная. Всем, однако, казалось, что слабое взаимодействие должно все‑таки подчиняться комбинированной симметрии CP, т. е. развитие Вселенной должно происходить так же, как и развитие ее зеркального отражения, если, отразив ее в зеркале, мы еще каждую частицу заменим античастицей! Но в 1964 г. еще два американца, Джеймс Кронин и Вел Фитч, обнаружили, что в распаде частиц, которые называются K‑мезонами, нарушается даже CP‑симметрия.

В результате в 1980 г. Кронин и Фитч получили за свою работу Нобелевскую премию. (Какое огромное количество премий присуждено за работы, в которых показано, что Вселенная не так проста, как нам кажется).

Существует математическая теорема, в которой утверждается, что любая теория, подчиняющаяся квантовой механике и теории относительности, должна всегда быть инвариантна относительно комбинированной симметрии CPT. Другими словами, поведение Вселенной не изменится, если заменить частицы античастицами, отразить все в зеркале и еще изменить направление времени на обратное. Но Кронин и Фитч показали, что если заменить частицы античастицами и произвести зеркальное отражение, но при этом не изменять направление времени на обратное, то Вселенная будет вести себя по‑другому. Следовательно, при обращении времени законы физики должны измениться, т. е. они не инвариантны относительно симметрии Т.

Понятно, что в ранней Вселенной нарушалась симметрия Т: когда время течет вперед, Вселенная расширяется, а если быi время пошло назад, то Вселенная начала бы сжиматься. А поскольку существуют силы, не инвариантные относительно симметрии Т, то отсюда следует, что но мере расширения Вселенной под действием этих сил антиэлектроны должны превращаться в кварки чаще, чем электроны в антикварки. Затем, когда Вселенная расширялась и охлаждалась, антикварки и кварки должны были аннигилировать, но поскольку кварков оказалось бы больше, чем антикварков, кварки остались бы в небольшом избытке. И они‑то и есть те самые кварки, из которых состоит сегодняшнее вещество, которое мы видим и из которого сотворены мы сами. Таким образом, само наше существование можно рассматривать как подтверждение теории великого объединения, правда, только как качественное подтверждение. Неопределенности происходят из‑за того, что мы не можем предсказать, ни сколько кварков останется после аннигиляции, ни даже будут ли оставшиеся частицы кварками или антикварками. (Правда, если бы в излишке остались антикварки, мы бы просто переименовали их в кварки, а кварки – в антикварки).

Теории великого объединения не включают в себя гравитационное взаимодействие. Это не столь уж существенно, потому что гравитационные силы так малы, что их влиянием можно просто пренебречь, когда мы им

Включайся в дискуссию
Читайте также
Светлана ромашина - биография, информация, личная жизнь
Если не сдал госы когда пересдача
Блины с грибами, рисом и яйцом